Your address will show here +12 34 56 78
2021 Blog, Blog, Featured, Research Gateway

We aim to enable the next-generation cloud-based platform for collaborative research on AWS with access to research tools, data sets, processing pipelines, and analytics workbench in a frictionless manner. It takes less than 30 minutes to launch a “MyResearchCloud” working environment for Principal Investigators and Researchers with security, scalability, and cost governance. Using the Software as a Service (SaaS) model is a preferable option for Scientific research in the cloud with tight control on data security, privacy, and regulatory compliances.

Typical top-5 use cases we have found for MyResearchCloud as a suitable solution for unlocking your Scientific Research needs:

  • Need an RStudio solution on AWS Cloud with an ability to connect securely (using SSL) without having to worry about managing custom certificates and their lifecycle
  • Genomic pipeline processing using Nextflow and Nextflow Tower (open source) solution integrated with AWS Batch for easy deployment of open source pipelines and associated cost tracking per researcher and per pipeline
  • Enable researchers with EC2 Linux and Windows servers to install their specific research tools and software. Ability to add AMI based researcher tools (both private and from AWS Marketplace) with 1-click on MyResearchCloud
  • Using SageMaker AI/ML Workbench drive Data research (like COVID-19 impact analysis) with available public data sets already on AWS cloud and create study-specific data sets
  • Enable a small group of Principal Investigator and researchers to manage Research Grant programs with tight budget control, self-service provisioning, and research data sharing

MyResearchCloud is a solution powered by RLCatalyst Research Gateway product and provides the basic environment with access to data, workspaces, analytics workbench, and cloud pipelines, as explained in the figure below. ​

Currently, it is not easy for research institutes, their IT staff, and a group of principal investigators & researchers to leverage the cloud easily for their scientific research. While there are constraints with on-premise data centers and these institutions have access to cloud accounts, converting a basic account to one with a secured network, secured access, ability to create & publish product/tools catalog, ingress & egress of data, sharing of analysis, tight budget control and other non-trivial tasks divert the attention away from ‘Science’ to ‘Servers’.

We aim to provide a standard catalog for researchers out-of-the-box solution with an ability to also bring your own catalog, as explained in the figure below.

Based on our discussions with research stakeholders, especially small & medium ones, it was clear that the users want something as easy to consume as other consumer-oriented activities like e-shopping, consumer banking, etc. This led to the simplified process of creating a “MyResearchCloud” with the following basic needs:

  • This “MyResearchCloud” is more suitable for smaller research institutions with a single or a few groups of Principal Investigators (PI) driving research with few fellow researchers.
  • The model to set up, configure, collaborate, and consume needs to be extremely simple and comes with pre-built templates, tools, and utilities.
  • PI’s should have full control of their cloud accounts and cost spends with dynamic visibility and smart alerts.
  • At any point, if the PI decides to stop using the solution, there should be no loss to productivity and preservation of existing compute & data.
  • It should be easy to invite other users to collaborate while still controlling their access and security.
  • Users should not be loaded with technical jargon while ordering simple products for day-to-day research using computation servers, data repositories, analysis IDE tools, and Data processing pipelines.

Based on the above ask, the following simple steps have been enabled:

Steps to Launch Activity Total time from Start
Step-1 As a Principal Investigator, create your own “MyResearchCloud” by using your Email ID or Google ID to login the first time on Research Gateway. 1 min
Step-2 If using a personal email ID, get an activation link and login for the first time with a secure password. 4 min
Step-3 Use your own AWS account and provide secure credentials for “MyResearchCloud” consumption. 10 min
Step-4 Create a new Research Project and set up your secure environment with default networking, secure connections, and a standard catalog. You can also leverage your existing setup and catalog. 13 min
Step-5 Invite new researchers or start using the new setup to order your products to get started with a catalog covering data, compute, analytic tools, and workflow pipeline. 15 min
Step-6 Order the necessary products – EC2, S3, Sagemaker/RStudio, Nextflow pipelines. Use the Research Gateway to interact with these tools without the need to access AWS Cloud console for PI and Researchers. 30 min

The picture below shows the easy way to get started with the new Launchpad and 30 minutes countdown.

Architecture Details
To balance the needs of Speed with Compliance, we have designed a unique model to allow Researchers to “Bring your own License” while leveraging the benefits of SaaS in a unique hybrid approach. Our solution provides a “Gateway” model of hub-and-spoke design where we provide and operate the “Hub” while enabling researchers to connect their own AWS Research accounts as a “Spoke”.

Security is a critical part of the SaaS architecture with a hub-and-spoke model where the Research Gateway is hosted in our AWS account using best practices of Cloud Management & Governance controlled by AWS Control Tower while each tenant is created using AWS security best practices of minimum privileges access and role-based access so that no customer-specific keys or data are maintained in the Research Gateway. The architecture and SaaS product are validated as per AWS ISV Path program for Well-Architected principles and data security best practices.

The following diagram explains in more detail the hub-and-spoke design for the Research Gateway.

This de-coupled design makes it easy to use a Shared Gateway while connecting your own AWS Account for consumption with full control and transparency in billing & tracking. For many small and mid-sized research teams, this is the best balance between using a third-party provider-hosted account and having their own end-to-end setup. This structure is also useful for deploying a hosted solution covering multiple group entities (or conglomerates), typically covering a collaborative network of universities working under a central entity (usually funded by government grants) in large-scale genomics grants programs. For customers who have more specific security and regulatory needs, we do allow both the hub-and-spoke deployment accounts to be self-hosted. The flexible architecture can be suitable for different deployment models.

AWS Services that MyResearchCloud uses for each customer:

Service Needed for Secure Research Solution Provided Run Time Costs for Customers
Need for DNS-based friendly URL to access MyResearchCloud SaaS RLCatalyst Research Gateway No additional costs
Secure SSL-based connection to my resources AWS ACM Certificates used and AWS ALB created for each Project Tenant AWS ALB implemented smartly to create and delete based on dependent resources to avoid fixed costs
Network Design Default VPC created for new accounts to save users trouble of network setups No additional costs
Security Role-based access provided to RLCatalyst Research Gateway with no keys stored locally No additional costs. Users can revoke access to RLCatalyst Research Gateway anytime.
IAM Roles AWS Cognito based model for Hub No additional costs for customers other than SaaS user-based license
AWS Resources Consumption Directly consumed based on user actions. Smart features are available by default with 15 min auto-stop for idle resources to optimize spends. Actual usage costs that is also suggested for optimization based on Spot instances for large workloads
Research Data Storage Default S3 created for Projects with the ability to have shared Project Data and also create private Study Data. Ability to auto-mount storage for compute instances with easy access, backup, and sync with base AWS costs
AWS Budgets and Cost Tracking Each project is configured to track budget vs. actual costs with auto-tagging for researchers. Notification and control to pause or stop consumption when budgets are reached. No additional costs.
Audit Trail All user actions are tracked in a secure audit trail and are visible to users. No additional costs
Create and use a Standard Catalog of Research Products Standard Catalog provided and uploaded to new projects. Users can also bring their own catalogs No additional costs.
Data Ingress and Egress for Large Data Sets Using standard cloud storage and data transfer features, users can sync data to Study buckets. Small set of files can also be uploaded from the UI. Standard cloud data transfer costs apply

In our experience, research institutions can enable new groups to use MyResearchCloud with small monthly budgets (starting with US $100 a month) and scale their cloud resources with cost control and optimized spendings.

With an intent to make Scientific Research in the cloud very easy to access and consume like typical Business to Consumer (B2C) customer experiences, the new “MyResearchCloud” model from Relevance Lab enables this ease of use with the above solution providing flexibility, cost management, and secure collaborations to truly unlock the potential of the cloud. This provides a fully functional workbench for researchers to get started in 30 minutes from a “No-Cloud” to a “Full-Cloud” launch.

If this seems exciting and you would like to know more or try this out, do write to us at

Reference Links
Driving Frictionless Research on AWS Cloud with Self-Service Portal
Leveraging AWS HPC for Accelerating Scientific Research on Cloud
RLCatalyst Research Gateway Built on AWS
Health Informatics and Genomics on AWS with RLCatalyst Research Gateway
How to speed up the GEOS-Chem Earth Science Research using AWS Cloud?
RLCatalyst Research Gateway Demo
AWS training pathway for researchers and research IT


2021 Blog, Blog, Featured, Research Gateway

Bioinformatics is a field of computational science that involves the analysis of sequences of biological molecules (DNA, RNA, or protein). It’s aimed at comparing genes and other sequences within an organism or between organisms, looking at evolutionary relationships between organisms, and using the patterns that exist across DNA and protein sequences to elucidate their function. Being an interdisciplinary branch of the life sciences, bioinformatics integrates computer science and mathematical methods to reveal the biological significance behind the continuously increasing biological data. It does this by developing methodology and analysis tools to explore the large volumes of biological data, helping to query, extract, store, organize, systematize, annotate, visualize, mine, and interpret complex data.

The advances in Cloud computing and availability of open source genomic pipeline tools have provided researchers powerful tools to speed up processing of next-generation sequencing. In this blog, we explain leveraging the RLCatalyst Research Gateway portal to help researchers focus on science and not servers while dealing with NGS and popular pipelines like RNA-Seq.

Steps and Challenges of RNA-Seq Analysis
Any Bioinformatics analysis involving next-generation Sequencing, RNA-Seq (named as an abbreviation of “RNA Sequencing”) constitutes of these following steps:

  • Mapping of millions of short sequencing reads to a reference genome, including the identification of splicing events
  • Quantifying expression levels of genes, transcripts, and exons
  • Differential analysis of gene expression among different biological conditions
  • Biological interpretation of differentially expressed genes

As seen from the figure below, the RNA-Seq analysis for identification of differentially expressed genes can be carried out in one of the three (A, B, C) protocols, involving different sets of bioinformatics tools. In study A, one might opt for TopHat, STAR, and HISAT for alignment of sequences and HTSeq for quantification, whereas the same set of steps can be performed by using Kalisto and Salmon tools (Study B) or in combination with CuffLinks (Study C) all of these yields the same results which are further used in the identification of differentially expressed genes or transcripts.

Each of these individual steps is executed using a specific bioinformatics tool or set of tools such as STAR, RSEM, HISAT2, or Salmon for gene isoform counting and extensive quality control of the sequenced data. The major bottlenecks in RNA-Seq data analysis include manual installations of software, deployment platforms, or computational capacity and cost.

Looking at the vast number of tools available for a single analysis and different versions and their compatibility makes the setup tricky. This can also be time-consuming as proper configuration and version compatibility assessment take several months to complete.

Nextflow: Solution to Bottleneck
The most efficient way to tackle these hurdles is by making use of Nextflow based pipelines that support cloud computing where virtual systems can be provisioned at a fraction of the cost, and the setup is seemingly smoother that can be done by a single individual, as well as support for container systems (Docker and Singularity).

Nextflow is a reactive workflow framework and a programming DSL (Domain Specific Language) that eases the writing of data-intensive computational pipelines.

As seen in the diagram below, the infrastructure to use Nextflow in the AWS cloud consists of a head node (EC2 instance with Nextflow and Nextflow Tower open source software installed) and wired to an AWS Batch backend to handle the tasks created by Nextflow. AWS Batch creates worker nodes at run-time, which can be either on-demand instances or spot instances (for cost-efficiency). Data is stored in an S3 bucket to which the worker nodes in AWS Batch connect and pull the input data. Interim data and results are also stored in S3 buckets, as is the output. The pipeline to be run (e.g. RNA-Seq, DualRNA-Seq, ViralRecon, etc.) is pulled by the worker nodes as a container image from a public repo like DockerHub or BioContainers.

RLCatalyst Research Gateway takes care of provisioning the infrastructure (EC2 node, AWS Batch compute environment, and Job Queues) in the AWS cloud with all the necessary controls for networking, access, data security, and cost and budget monitoring. Nextflow takes care of creating the job definitions and submitting the tasks to Batch at run-time.

The researcher initiates the creation of the workspace from within the RLCatalyst Research Gateway portal. There is a wide selection of parameters as input including, which pipeline to run, tuning parameters to control the sizing and cost-efficiency of the worker nodes, the location of input and output data, etc. Once the infrastructure is provisioned and ready, the researcher can connect to the head node via SSH and launch Nextflow jobs. The researcher can also connect to the Nextflow Tower UI interface to monitor the progress of jobs.

The pre-written Nextflow pipelines can be pulled from an nf-core GitHub repository and can be set up within minutes allowing the entire analysis to run using a single line command, and the results of each step are displayed on the command line/shell. Configuration of the resources on the cloud is seamless as well, since Nextflow based pipelines provide support for batch computing, enabling the analysis to scale as it progresses. Thus, the researchers can focus on running the pipeline and analysis of output data instead of investing time in setup and configurations.

As seen from the pipeline output (MultiQC) report of the Nextflow-based RNA-Seq pipeline below, we can identify the sequence quality by looking at FastQC scores, identify duplication scenarios based on the contour plots as well as pinpoint the genotypic biotypes along with fragment length distribution for each sample.

RLCatalyst Research Gateway enables the setting up and provisioning of AWS cloud resources with few simple clicks for such analysis, and the output of each run is saved in a S3 bucket enabling easy data sharing. These provisioned resources are pre-configured setups with a proper design template and security architecture and added to these features. RLCatalyst Research Gateway enables cost tracking for the currently running projects, which can be paused/ stopped or deleted as per convenience.

Steps for Running Nextflow-Based Pipelines in AWS Cloud for Genomic Research
Prerequisites for a researcher before starting data analysis.

  • A valid AWS account and access to the RLCatalyst Research Gateway portal
  • A publicly accessible S3 bucket with large Research Data sets accessible

Once done, below are the steps to execute this use case.

  • Login to the RLCatalyst Research Gateway Portal and select the project linked to your AWS account
  • Launch the Nextflow-Advanced product
  • Login to the head node using SSH (Nextflow software will already be installed on this node)
  • In the pipeline folder, modify the nextflow.config file to set the data location according to your needs (Github repo, S3 bucket, etc.). This can also be passed via the command line
  • Run the Nextflow job on the head node. This should automatically cause Nextflow to submit jobs to the AWS Batch backend
  • Output data will be copied to the Output bucket specified
  • Once done, terminate the EC2 instance and check for the cost spent on the use case
  • All costs related to the Nextflow project and researcher consumption are tracked automatically

Key Points

  • Bioinformatics involves developing methodology and analysis tools to analyze large volumes of biological data
  • Vast number of tools available for a single analysis and their compatibility make the analysis setup tricky
  • RLCatalyst Research Gateway enables the setting up and provisioning of Nextflow based pipelines and AWS cloud resources with few simple clicks

Researchers need powerful tools for collaboration and access to commonly used NGS pipelines with large data sets. Cloud computing makes it much easier with access to workflows, data, computation, and storage. However, there is a learning curve for researchers to use Cloud-specific knowhow and how to use resources optimally for large-scale computations like RNA-Seq analysis pipelines that can also be quite costly. Relevance Lab working closely with AWS partnership has provided RLCatalyst Research Gateway portal to use commonly used pre-built Nextflow pipeline templates and integration with open source repositories like nf-core and biocontainers. RLCatalyst Research Gateway enables execution of such Nextflow-based scalable pipelines on the cloud with few clicks and configurations with cost tracking and resource execution control features. By using AWS Batch the solution is very scalable and optimized for on-demand consumption.

For more information, please feel free to write to



2021 Blog, Blog, Featured, Research Gateway

Working on non-scientific tasks such as setting up instances, installing software libraries, making model compile, and preparing input data are some of the biggest pain points for atmospheric scientists or any scientist for that matter. It’s challenging for scientists as it requires them to have strong technical skills deviating them from their core areas of analysis & research data compilation. Further adding to this, some of these tasks require high-performance computation, complicated software, and large data. Lastly, researchers need a real-time view of their actual spending as research projects are often budget-bound. Relevance Lab help researchers “focus on science and not servers” in partnership with AWS leveraging the RLCatalyst Research Gateway (RG) product.

Why RLCatalyst Research Gateway?
Speeding up scientific research using AWS cloud is a growing trend towards achieving “Research as a Service”. However, the adoption of AWS Cloud can be challenging for Researchers with surprises on costs, security, governance, and right architectures. Similarly, Principal Investigators can have a challenging time managing the research program with collaboration, tracking, and control. Research Institutions will like to provide consistent and secure environments, standard approved products, and proper governance controls. The product was created to solve these common needs of Researchers, Principal Investigator and Research Institutions.

  • Available on AWS Marketplace and can be consumed in both SaaS as well as Enterprise mode
  • Provides a Self-Service Cloud Portal with the ability to manage the provisioning lifecycle of common research assets
  • Gives a real time visibility of the spend against the defined project budgets
  • The principal investigator has the ability to pause or stop the project in case the budget is exceeded till the new grant is approved

In this blog, we explain how the product has been used to solve a common research problem of GEOS-Chem used for Earth Sciences. It covers a simple process that starts with access to large data sets on public S3 buckets, creation of an on-demand compute instance with the application loaded, copying the latest data for analysis, running the analysis, storing the output data, analyzing the same using specialized AI/ML tools and then deleting the instances. This is a common scenario faced by researchers daily, and the product demonstrates a simple Self-Service frictionless capability to achieve this with tight controls on cost and compliance.

GEOS-Chem enables simulations of atmospheric composition on local to global scales. It can be used off-line as a 3-D chemical transport model driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling Assimilation Office (GMAO). The figure below shows the basic construct on GEOS-Chem input and output analysis.

Being a common use case, there is documentation available in the public domain by researchers on how to run GEOS-Chem on AWS Cloud. The product makes the process simpler using a Self-Service Cloud portal. To know more about similar use cases and advanced computing options, refer to AWS HPC for Scientific Research.

Steps for GEOS-Chem Research Workflow on AWS Cloud
Prerequisites for researcher before starting data analysis.

  • A valid AWS account and an access to the RG portal
  • A publicly accessible S3 bucket with large Research Data sets accessible
  • Create an additional EBS volume for your ongoing operational research work. (For occasional usage, it is recommended to upload the snapshot in S3 for better cost management.)
  • A pre-provisioned SageMaker Jupyter notebook to analyze output data

Once done, below are the steps to execute this use case.

  • Login to the RG Portal and select the GEOS-Chem project
  • Launch an EC2 instance with GEOS-Chem AMI
  • Login to EC2 using SSH and configure AWS CLI
  • Connect to a public S3 bucket from AWS CLI to list NASA-NEX data
  • Run the simulation and copy the output data to a local S3 bucket
  • Link the local S3 bucket to AWS SageMaker instance and launch a Jupyter notebook for analysis of the output data
  • Once done, terminate the EC2 instance and check for the cost spent on the use case
  • All costs related to GEOS-Chem project and researcher consumption are tracked automatically

Sample Output Analysis
Once you run the output files on the Jupyter notebook, it does the compilation and provides output data in a visual format, as shown in the sample below. The researcher can then create a snapshot and upload it to S3 and terminate the EC2 instance (without deleting the additional EBS volume created along with EC2).

Output to analyze loss rate and Air mass of Hydroxide pertaining to Atmospheric Science.

Scientific computing can take advantage of cloud computing to speed up research, scale-up computing needs almost instantaneously, and do all this with much better cost-efficiency. Researchers no longer need to worry about the expertise required to set up the infrastructure in AWS as they can leave this to tools like RLCatalyst Research Gateway, thus compressing the time it takes to complete their research computing tasks.

The steps demonstrated in this blog can be easily replicated for similar other research domains. Also, it can be used to onboard new researchers with pre-built solution stacks provided in an easy to consume option. RLCatalyst Research Gateway is available in SaaS mode from AWS Marketplace and research institutions can continue to use their existing AWS account to configure and enable the solution for more effective Scientific Research governance.

To learn more about GEOS-Chem use cases, click here.

If you want to learn more about the product or book a live demo, feel free to contact

Enabling Immediate Access to Earth Science Models through Cloud Computing: Application to the GEOS-Chem Model
Enabling High‐Performance Cloud Computing for Earth Science Modeling on Over a Thousand Cores: Application to the GEOS‐Chem Atmospheric Chemistry Model


2020 Blog, AWS Platform, Blog, Featured, Research Gateway

While there is rapid momentum for every enterprise in the world in consuming more Cloud Assets and Services, there is still lack of maturity in adopting an “Automation-First” approach to establish Self-Service models for Cloud consumptions due to fear of uncontrolled costs, security & governance risks and lack of standardized Service Catalogs of pre-approved Assets & Service Requests from Central IT groups. Lack of delegation and self-service has a direct impact on speed of innovation and productivity with higher operations costs.

Working closely with AWS Partnership we have now created a flexible platform for driving faster adoption of Self-Service Cloud Portals. The primary needs for such a Self-Service Cloud Portal are the following.

  • Adherence to Enterprise IT Standards
    • Common architecture
    • Governance and Cost Management
    • Deployment and license management
    • Identity and access management
  • Common Integration Architecture with existing platforms on ITSM and Cloud
    • Support for ServiceNow, Jira, Freshservice and Standard Cloud platforms like AWS
  • Ability to add specific custom functionality in the context of Enterprise Business needs
    • The flexibility to add business specific functionality is key to unlocking the power of self-service models outside the standard interfaces already provided by ITSM and Cloud platforms

A common way of identifying the need for a Self-Service Cloud portal is based on following needs.

  • Does your enterprise already have any Self-Service Portals?
  • Do you have a large user base internally or with external users requiring access to Cloud resources?
  • Does your internal IT have the bandwidth and expertise to manage current workloads without impacting end user response time expectations?
  • Does your enterprise have a proper security governance model for Cloud management?
  • Are there significant productivity gains by empowering end users with Self-Service models?

Working with AWS partnership and with our existing customer we see a growing need for Self-Service Cloud Portals in 2020 predominantly centred around two models.

  • Enterprises with existing ITSM investments and need to leverage that for extending to Cloud Management
  • Enterprises extending needs outside enterprise users with custom Cloud Portals

The roadmap to Self-Service Cloud portals is specific to every enterprise needs and needs to leverage the existing adoption and maturity of Cloud and ITSM platforms as explained below. With Relevance Lab RLCatalyst products we help enterprises achieve the maturity in a cost effective and expedited manner.

Examples of Self-Service Cloud Portals

Standard Needs Platform Benefits
Look-n-Feel of Modern Self-Service Portals Professional and responsive UI Design with multiple themes available, customizations allowed
Standards based Architecture & Governance Tightly Built On AWS products and AWS Well Architected with pre-built Reference Architecture based Products
Pre-built Minimum Viable Product Needs 80-20 Model – Pre-built vs Customizations based on key components of core functionality
Proprietary vs Open Source? Open-source foundation with source code made available built on MEAN Stack
Access Control, Security and Governance Standard Options Pre-built, easy extensions (SAML Based). Deployed with enterprise grade security and compliances
Rich Standard Pre-Build Catalog of Assets and Services Comes pre-built with 100+ catalog items covering all standard Asset and Services needs catering to 50% of any enterprise infrastructure, applications and service delivery needs

Explained below is a sample AWS Self-Service Cloud for driving Scientific Research.

Getting started
To make is easier for enterprises for experiencing the power of Self-Service Cloud Portals we are offering two options based on enterprise needs.

  • Hosted SAAS offering of using our Multi-tenant Cloud Portal with ability to connect to your existing Cloud Accounts and Service Catalogs
  • Self-Hosted RLCatalyst Cloud Portal product with option to engage us for professional services on customizations, training, initial setup & onboarding needs

Pricing for the SAAS offering is based on user based monthly subscription while for self-hosting model an enterprise support model pricing is available for the open source solution that allows enterprises the flexibility to use this solution without proprietary lock-ins.

The typical steps to get started are very simple covering the following.

  • Setup an organization and business units or projects aligned with your Cloud Accounts for easy billing and access control tracking
  • Setup users and roles
  • Setup Budgets and controls
  • Setup standard catalog of items for users to order
  • With the above enterprises are up to speed to use Self-Service Cloud Portals in less than 1-Day with inbuilt controls for tracking and compliance

Cloud Portals for Self-Service is a growing need in 2020 and we see the momentum continuing for next year as well. Different market segments have different needs for Self-Service Cloud portals as explained in this Blog.

  • Scientific Research community is interested in a Research Gateway Solution
  • University IT looks for a University in a Box Self Service Cloud
  • Enterprises using ServiceNow want to extend the internal Self Service Portals
  • Enterprises are also developing Hybrid Cloud Orchestration Portals
  • Enterprises looking at building AIOps Portal needs monitoring, automation and service management
  • Enabling Virtual Training Labs with User and Workspace onboarding
  • Building an integrated Command Centre requires an Intelligent Monitoring portal
  • Enterprise Intelligent Automation Portal with ServiceNow Connector

We provide pre-build solutions for Self-Service Cloud Portals and a base platform that can be easily extended to add new functionality for customization and integration. A number of large enterprises and universities are leveraging our Self Service Cloud portal solutions using both existing ITSM tools (Servicenow, Jira, Freshservice) and RLCatalyst products.

To learn more about using AWS Cloud or ITSM solutions for Self-Service Cloud portals contact